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Abstract - this paper presents a method of hurtless

determination of tissue metabolic rate at steady temperature

field. On the assumption that the relationship T (x) between the

temperature T of inner body at the different position and these

positions x is a quadratic equation, getting surface temperature

of human body by infrared thermography. We deduced the

relationship between the apparent conductivity and different

position according to classical  bio-heat transfer function. And

then calculated the tissue Metabolic rate at the corresponding

position under the conduction of the temperature field of inner

body is keeping stable, and verified this method by experiment

and calculation at last.

Keywords - steady temperature field, hurtless measure, tissue

metabolic rate, apparent conductivity, infrared thermography

I. INTRODUCTION

The absolute difference between the biology and other

materials on heat transform is that the former has inner heat

source, which is produced through metabolism. This heat-

produced metabolism is important for the biology. One of the

major functions of it is making the biology maintain a very

steady body temperature. Metabolize plays an important role

in the course of human body’s energy transform and heat

production. Metabolic rate is the speed rate of transformation

from system chemical energy to heat energy. There are

obviously differences lie in the metabolic rates of different

tissues and organs while the basal metabolic rate depends on

the living’s activate degree [1].

One important object of the bio-heat transfer research is to

measure these metabolic rates and put it into application.

Blood perfusion and metabolic rate are two the most

important and unclear thermal parameters in the bio-heat

transfer research [2]. At present, a lot of papers focus on

blood perfusion that indicates the affection to heat transforms

caused by blood stream, but few on inner heat source [3][4].

The metabolic rate may be the least known parameter in the

biology heat transformation equation. Due to the difficulty of

measuring some physiological parameters such as local

oxygen consume and so on, the local tissue metabolic rate

seems hardly to be directly measured and the measured

results are not very accurate. So the determination of the

living tissue metabolic rate is the difficult problem, much less

than detection without hurt. But many researchers have done

a lot work in field of biology thermal parameters

determination and provided some measure value of these

parameters for reference, and some scholars among them

deduced the relation between inner blood perfusion and

metabolic rate [5][6].

On the base above mentioned, getting surface temperature

of human body by infrared thermography as boundary

condition, we create the quadratic equation model of inner

temperature field distribution under the conduction of inner

temperature filed keeping stable. And we try to deduce the

relationship between the apparent conductivity and different

position according to classical bio-heat transfer function.

Then calculate the tissue Metabolic rate at the corresponding

position . So it presents a method of hurtless determination of

tissue metabolic rate at steady temperature field.

II. METHODOLOGY

A. Theory

According to classical Pennes bio-heat transfer model[7]:

mabbb QTTCwTK
t
T

C +−+∇⋅∇=
∂
∂

)()( υρρ    (1)     

Where:

K  : thermal conductivity, kJ/m K s

Wb : blood perfusion , kg / m3 s

Qm : tissue metabolic rate, kJ/ m3
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 Generally these three significant thermal parameters are

varied with different time and position. Considering in b io-

heat transfer research field the most basal measure parameter

is the temperature at different position of inner body, these

temperature are defined by the heat balance status, while the

coefficients of heat balance equation are just the thermal

parameters. So we can depend on the reasonable heat transfer

model to get the thermal parameters at the different position

of inner body, only using the surface temperature of body as

know condition. When the temperature field is keeping stable,

the thermal parameters K(x) Wb(x) and Qm(x) at different

positions are unvaried, so the regulation of thermal

parameters varied with temperature at different position will

be obtained by determining these parameters in different stale

temperature filed.

B. Model

In order to measure hurtlessly the temperature of inner

body, supposing the temperature distribution T(x) from the

core to the surface of body as eq.(2), T is the temperature, x is

the distance of a inner position of body to body core.

    )( 2
210 xaxaaxT ++=         (2)        

considering  boundary condition

                                   

                 

                      (3)

Where:

Tc: temperature of body core

Ts: temperature of body surface

So get 

2
2)( x

r

TT
TxT sc
c

−
−=        (4)

for the eq. (1), if we consider the whole effect of K and

Wb ,and use the apparent conductivity  to indicate this

effect[8]. then when the temperature field is keeping stable ,

there is :

mQT +∇•∇= )(0 λ               (5)

Considering eq.(3), (4) is

    (6)

Considering the relationship between the metabolic rate

and blood perfusion, deduce to:

                (7)

Considering eq. (5) and eq. (6), get:

           (8)

                 (9)

Where:

 p is the apparent conductivity of surface, and it can be

calculated by eq. (10):

  (10)

   

where is the heat exchange coefficient between body

surface and environment, Te is environment temperature.

III  RESULTS AND DISSCUSION

In the experiment of this paper, after the experimental

subject has been quietly in lab for 30 minuets in which

temperature and humidity are keeping stale and from which

anything can affect temperature isolated, so we can think his

temperature distribution of inner body is stable. We record

the environment temperature and the finger radius of him,

then take infrared thermography of his body surface

temperature by NEC TH5108 ME. For take example, we

choice the surface temperature distribution to research

considered the shape of finger is nearly cylinder, for Pennes

bio-heat transfer model is created on the base of supposing

the living body is a cylinder. The point in Fig. 1 is the

example point to calculate inner tissue metabolism rate under

it.
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     Fig. 1Thermography of hands

So using the equations above mentioned, we calculated the

tissue Metabolic rate Qm(x)at the different position of inner

body, (in calculation, Tc was measured from rectum), the

result is listed in Table 1.

Tab 1. the tissue Metabolic rates at different position of inner body

x(m) T’( )
by eq.(3) (W/m. )

Qm
(J/m3.s)

0.00 36.7 M0

0.002 36.627 0.249 499.5

0.004 36.406 0.130 259.4

0.0006 36.039 0.088 176.8

0.008 35.525 0.067 134.7

0.01 34.863 0.054 109.1

0.012 34.055 0.049 91.8

0.014 33.1 0.040 79.3

The result indicates that using the surface temperature

obtained by infrared thermography, applying the method

presented above mentioned, finally we can get hurtlessly the

tissue metabolic rate at the different position, and these

calculated value consist with the classical average of Qm in

quantity level.  Calculated all temperature point of surface

with this method, the inner temperature filed distribution and

the tissue metabolic rate distribution could be obtained

hurtlessly.

IV  CONCLUSIONS

In order to verify T(x) nearly is a quadratic equation, the

temperature data of arm in Pennes experiment are used to fit

and to calculate and Qm at corresponding positions [6] ,

result is shown in Fig.2 and Table.2:

          

          Fig 2  T~x  distrubition

In Fig 2, the temperature distribution of Pennes’s

experiment data is compared with the quadratic equation

value fitted by the former , and it is clearly that the latter

point near the former and T(x) nearly is parabola. So it

indicates the supposition that T(x) is a quadratic equation is

reasonable and suitable.

            Table 2  calculated  result

x(m) T( )
measured

T’( )
By eq.(2)

T''( )
By eq.(3 (W/m. )

Qm
(J/m3.s)

0.00 36.15 36.18 36.15 M0

0.005 36.1 36.05 36.11 0.732 1464

0.01 35.9 35.87 35.99 0.046 920

0.015 35.6 35.63 35.79 0.344 688

0.02 35.3 35.34 35.51 0.284 568

0.025 35.0 34.99 35.15 0.243 486

0.03 34.6 34.59 34.71 0.214 428

0.035 34.2 34.14 34.19 0.192 386

0.04 33.6 33.63 33.6 0.176 352

    

In Table 2, the temperature of every position in inner arm

calculated by eq.(3) is near the measured value, and the

calculated tissue metabolic rate of every point is in the same

quantity level as the classical aveage Qm 420(J/m3.s). It

indicates not only this method is can be used to obtain the

inner temperature of body hurtlessly, and also the result is

reasonable.

From eq.(8), It is can be know that the more inner position
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is, the larger tissue metabolic rate is. this conclusion is accord

with the physiological fact. While on the condition of that Tc

is larger than Ts, at the same position, the  and Qm  are

larger with larger d, which is defined by Tc subtract Ts, than

ones with smaller d. Fig 3 indicates the vary tendency of 

with different d accord to eq.(8).

   

              Fig 3  with different d
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